0960-894X/97 \$17.00 + 0.00

PII: S0960-894X(97)00305-3

MONO AND BIS DOUBLE ESTER PRODRUGS OF NOVEL AMINOMETHYL-THF 1β-METHYLCARBAPENEMS

Yang-I Lin, Panayota Bitha, Zhong Li, Subas M. Sakya, Timothy W. Strohmeyer, . Stanley A. Lang, Jr., Youjun Yang, Niraja Bhachech, William J. Weiss, Peter J. Petersen, Nilda V. Jacobus, Karen Bush, and Raymond T. Testa

Wyeth-Ayerst Research, Division of American Home Products Corporation, Infectious Diseases Research Section, Pearl River, N.Y. 10965

Abstract: Mono and bis double ester prodrugs of aminomethyl THF 1β-methylcarbapenems 1 were synthesized. Mono double ester derivatives (2, 4 and 7) did not demonstrate significantly improved oral activity due to the presence of the charged species. However, bis double ester derivatives (3 and 5) demonstrated enhanced oral activity. © 1997 Elsevier Science Ltd.

In previous publications, we reported the synthesis and antimicrobial activity of novel aminomethyl-THF 1β-methylcarbapenems 1, of which CL191,121 is a representative member. These carbapenems had a spectrum of activity against Gram-positive and Gram-negative organisms, comparable to or better than that of imipenem with the exception of only moderate antipseudomonal activity. Most importantly, they demonstrated some intrinsic oral activity (ED50 = 2-4 mg/kg) against an E. coli lethal infection in mice. However, the effective oral dose (ED50) was about 11 to 14 times higher than the effective subcutaneous dose (ED50). Ideally, the ratio of ED50 values obtained from SOD (single oral dose) and SSC (single subcutaneous dose) should approach 1.0 showing bioequivalence. Therefore, efforts were directed toward improving this ratio.

1: THF Carbapenems 1a: 3R, 2R (CL191,121) 1b: 3R, 5R and 3S, 5S (cis)

Oral drugs can be absorbed either by passive transport through phospholipid membranes or by active transport through a carrier mechanism. Therefore, we took both approaches for improving oral absorption of aminomethyl-THF 1\beta-methylcarbapenems 1. They were: (a) to prepare L-amino acid prodrugs in order to

1812 Y.-I. LIN et al.

improve absorption through di/tripeptide transport mechanism by increasing their resemblance to tripeptides and (b) to prepare its double ester prodrugs in order to facilitate absorption through the phospholipid membrance by eliminating the ionic nature and increasing the lipophilicity of the parent compound. In the previous communication,² we reported the L-amino acid prodrug approach for improving oral activity. We report here the synthesis, antimicrobial activity and oral activity of mono and bis double ester prodrugs of the aminomethyl-THF 1β-methylcarbapenems 1.

Chemistry

Synthesis of aminomethyl-THF 1β-methylcarbapenems (1a and 1b) was previously described. ^{1(a)} The carbapenem 1a is optically pure, and the carbapenem 1b is a mixture of diastereomers. As shown in Scheme 1, mono double ester derivatives 2 were synthesized in 75–80% yields by reaction of the carbapenems 1a with acylating agents 10 either in a mixture of 0.1 M buffer solution and p-dioxane at pH 8.5 or in the presence of Hunig base in a mixture of acetonitrile and p-dioxane. Bis double ester derivatives 3 were synthesized in about 77% yield by reaction of the mono double ester derivatives 2 with alkylating agents R₂I in acetonitrile. Mono double ester derivative 4 and bis double ester derivative 5 in Table 3 were similarly synthesized from the carbapenem 1b. Mono double ester derivatives 7 were synthesized in three steps by reaction of the 1β-methylcarbapenem 1a with PNZOC₆H₄NO₂-p, followed by alkylation with R₂I and catalytic hydrogenation with 10% Pd/C at pH 6.5 (Scheme 2). The THF carbapenems 1 are quite stable at room temperature between pH 6 and 8 with a half life of ca. 200 to ca. 400 h but their stability declines steeply outside of this range. Therefore, the reactions in 0.1 M buffer solution (NaH₂PO₄-Na₂HPO₄) at pH 8.5 were carried out at 0 °C, and the reactions under anhydrous conditions were carried out at room temperature. Synthesis of the acylating agents 10 is shown in Scheme 3.4

1a
$$\xrightarrow{a}$$
 \xrightarrow{OH} \xrightarrow{N} \xrightarrow{O} $\xrightarrow{R_1}$ \xrightarrow{OH} \xrightarrow{O} $\xrightarrow{R_1}$ \xrightarrow{O} \xrightarrow{N} \xrightarrow{O} $\xrightarrow{R_1}$ \xrightarrow{O} \xrightarrow{N} \xrightarrow{N} \xrightarrow{O} \xrightarrow{N} $\xrightarrow{N$

Scheme 1: (a) 10/pH 8.5 buffer/p-dioxane/0 °C, 75% or 10/EtN(iPr)₂/CH₃CN/p-dioxane/r t, 80%; (b) R₂VK₂CO₃/CH₃CN/r t,77%

Scheme 2: (a) (1) PNZOC₆H₄NO₂-p(EtN(Pr)-p(CH₃CN/p-dioxane/r t, 80% and (2) R₂I/K₂CO₃/CH₃CN/r t,77%; (b) H₂/10% Pd/C/pH 6.5 buffer/p-dioxane/r t, 65%

Scheme 3: (a) (1) HOC₆H₄NO₂-p/TEA/r t, 90%; (b) (R*CO₂)₂Hg/R*CO₂H/heating, 85%

Results and Discussion

 1β -Methylcarbapenem 1a has pKa values of 3.1 and 9.1 and the isoelectric point at pH 6.0.³ The predominant species at various pH's are cationic below pH 3.1, anionic above pH 9.1 and zwitterionic between pH 3.1 and 9.1. The partition into a lipid phase (n-octanol) is less than one tenth of one percent at all physiological pH's $(1\sim7.4)^3$ and is consistent with its Clog P value of -3.02 for the nonionic form. Therefore, it can not possibly be absorbed significantly through the phospholipid bilayer at all physiological pH's, and there is a need to prepare double ester prodrugs in order to facilitate absorption through the phospholipid bilayer by eliminating the ionic nature and increasing the lipophilicity of the molecule. It is expected that the 1β -methylcarbapenem 1b would behave similarly.

Mono double ester derivatives and bis double ester derivatives were all tested for *in vitro* activity with and without preincubation in mouse serum. All the ester derivatives were hydrolyzed to yield antibacterial activity that paralleled those of the parent compounds, 1a and 1b. The in vitro antimicrobial activity of some representative mono and bis double ester prodrugs is shown in Tables 1 and 2. In general, mono ester derivatives 2 were quite active whereas mono ester derivatives 7 were less active, and bis double ester derivatives 3 were inactive except against *E. coli* GC2205 (permeability mutant). These ester prodrugs all demonstrated better stability than imipenem to hydrolysis by hog renal dehydropeptidase. As is evident from the SOD value and the SOD/SSC ratio in Table 3, mono double ester derivatives (2, 4 and 7) did not demonstrate

1814

Table 1 Mono Double Ester Prodrugs

In vitro activity (MIC: ug/mL)

						In vitro activity (MIC; μg/mL)			
	1a	2a	2a*	2c	2c*	2d	2 d*	7a	7a*
Strain									
ATCC 25922	⊴0.06	0.12	≤0.06	0.25	≤0.06	0.50	≤0.06	0.50	⊴0.06
GC 2205	⊴0.06	0.12	⊴0.06	0.12	≲0.06	0.06	⊴0.06	1.0	⊴0.06
GC 1792	⊴0.06	0.25	≤0.08	0.50	≤0.06	0.50	≤0.06	0.50	≤0.06
GC 2209	⊴0.06	20	⊴0.08	1.0	0.06	20	0.08	20	0.12
GC 2211	≤0.06	4.0	0.25	20	0.25	4.0	0.12	4.0	0.25
GC 2213	0.50	2.0	1.0	4.0	0.50	2.0	0.50	16	0.50
GC 756	20	32	4.0	32	4.0	32	20	64	2.0
ATCC 27853	8.0	64	16	64	8.0	64	8.0	128	8.0
GC 1544 OprD-	16	>128	32	>128	16	>128	16	>128	32
GC 562	>126	>128	>128	>128	>128	>128	>128	>128	>128
ATCC 29213	⊴0.06	0.50	≤0.06	0.25	0.03	0.12	0.03	1.0	0.03
GC 2220 MRSA	1.0	32	8.0	8.0	20	8.0	1.0	64	20
GC 842	0.50	4.0	1.0	4.0	1.0	20	1.0	16	20
GC 1182	64	>128	64	>128	64	128	64	128	128
		6							
	GC 2205 GC 1792 GC 2209 GC 2211 GC 2213 GC 756 ATCC 27853 GC 1544 OptO- GC 562 ATCC 29213 GC 2220 MRSA GC 842	Strain ATCC 25922	Strain ATCC 25922	Strain ATCC 25922 ≤0.06 0.12 ≤0.06 GC 2206 ≤0.08 0.12 ≤0.08 GC 1792 ≤0.08 0.25 ≤0.08 GC 2209 ≤0.08 2.0 ≤0.08 GC 2211 ≤0.08 4.0 0.25 GC 2213 0.50 2.0 1.0 GC 756 2.0 32 4.0 ATCC 27853 8.0 64 16 GC 1544 OprD- 16 >128 32 GC 562 >128 >128 >128 ATCC 29213 ≤0.06 0.50 ≤0.08 GC 2220 MRSA 1.0 32 8.0 GC 842 0.50 4.0 1.0 GC 1182 64 >128 64	Strain ATCC 25922 ≤0.06 0.12 ≤0.06 0.25 GC 2205 ≤0.06 0.12 ≤0.06 0.12 GC 1792 ≤0.06 0.25 ≤0.06 0.50 GC 2209 ≤0.06 2.0 ≤0.08 1.0 GC 2211 ≤0.06 4.0 0.25 2.0 GC 2213 0.50 2.0 1.0 4.0 GC 756 2.0 32 4.0 32 ATCC 27853 8.0 64 16 64 GC 1544 Opr0- 16 >128 32 >128 GC 562 >128 >128 >128 >128 ATCC 29213 ≤0.06 0.50 ≤0.06 0.25 GC 2220 MRSA 1.0 32 8.0 8.0 GC 842 0.50 4.0 1.0 4.0 GC 1182 64 >128 64 >128	Strain ATCC 25922 s0.06 0.12 s0.06 0.25 s0.06 GC 2205 s0.06 0.12 s0.06 0.12 s0.06 0.12 s0.06 GC 1792 s0.06 0.25 s0.08 0.50 s0.06 GC 30.08 1.0 0.06 GC 2209 s0.06 4.0 0.25 2.0 0.25 GC 2211 s0.06 4.0 0.25 2.0 0.25 GC 2213 0.50 2.0 1.0 4.0 0.50 GC 7566 2.0 32 4.0 32 4.0 ATCC 27853 8.0 64 16 64 8.0 GC 1544 OptD- 16 >128 32 >128 128 >128 >128 >128 ATCC 29213 s0.06 0.50 s0.06 0.25 0.03 GC 2220 MRISA 1.0 32 8.0 8.0 2.0 GC 842 0.50 4.0 1.0 4.0 1.0 4.0 1.0 GC 1182<	Strain 1a 2a 2a* 2c 2c* 2d ATCC 25922 ≤0.06 0.12 ≤0.06 0.25 ≤0.06 0.50 GC 2205 ≤0.06 0.12 ≤0.06 0.12 ≤0.06 0.02 GC 1792 ≤0.08 0.25 ≤0.08 0.50 ≤0.08 0.50 GC 2209 ≤0.06 2.0 ≤0.08 1.0 0.06 2.0 GC 2211 ≤0.06 4.0 0.25 2.0 0.25 4.0 GC 2213 0.50 2.0 1.0 4.0 0.50 2.0 GC 756 2.0 32 4.0 32 4.0 32 ATCC 27853 8.0 64 16 64 8.0 64 GC 1544 Opt0- 16 >128 32 >128 >128 >128 ATCC 29213 ≤0.06 0.50 ≤0.06 0.25 0.03 0.12 GC 2220 MRSA 1.0 32 8.0 8.0	Strain 1a 2a 2a* 2c 2c* 2d 2d* ATCC 25922 ≤0.06 0.12 ≤0.06 0.25 ≤0.06 0.50 ≤0.06 GC 2205 ≤0.06 0.12 ≤0.06 0.12 ≤0.06 0.00 ≤0.06 GC 1792 ≤0.06 0.25 ≤0.06 0.50 ≤0.06 0.50 ≤0.06 GC 2209 ≤0.06 2.0 ≤0.08 1.0 0.06 2.0 0.08 GC 2211 ≤0.06 4.0 0.25 2.0 0.25 4.0 0.12 GC 2213 0.50 2.0 1.0 4.0 0.50 2.0 0.50 GC 756 2.0 32 4.0 32 4.0 32 2.0 ATCC 27853 8.0 64 16 64 8.0 64 8.0 GC 1544 Opr0- 16 >128 32 >128 >128 >128 >128 >128 >128 >128 >128	Strain 1a 2a 2a* 2c 2c* 2d 2d* 7a ATCC 25922 ≤0.06 0.12 ≤0.06 0.25 ≤0.06 0.50 ≤0.06 0.50 GC 2205 ≤0.06 0.12 ≤0.06 0.12 ≤0.06 0.50 ≤0.06 1.0 GC 1792 ≤0.06 0.25 ≤0.06 0.50 ≤0.06 0.50 ≤0.06 0.50 GC 2209 ≤0.06 2.0 ≤0.08 1.0 0.06 2.0 0.06 2.0 GC 2211 ≤0.06 4.0 0.25 2.0 0.25 4.0 0.12 4.0 GC 2213 0.50 2.0 1.0 4.0 0.50 2.0 0.50 16 GC 756 2.0 32 4.0 32 4.0 32 2.0 64 ATCC 27853 8.0 64 16 64 8.0 64 8.0 128 128 128 128 128 128

^{*}Following preincubation in mouse serum. **Imipenem = 100.

Table 2 Bis Double Ester Prodrugs

In vitro activity (MIC; µg/mL)

							In vitro activity			
Compound		1a	3a	3a*	3e	3e*	3h	3h*	3i	31*
ORGANISM	Strain									
E. coli	ATCC 25922	≤0,06	32	⊴0.06	4.0	⊴0.06	128	0.06	128	0.06
E. coli	GC 2205	≤0.06	20	0.06	1.0	0.06	1.0	0.12	1.0	0.06
E. coli	GC 1792	≤0.06	16	0.06	8.0	⊴0.06	>128	0.12	>128	0.06
E. cloacae	GC 2209	≤0.06	>128	0.12	64	0.12	>128	0.25	>128	0.12
C. freundii	GC 2211	≤0.06	>128	0.25	128	0.25	>128	0.50	>128	0.50
M. morganii	GC 2213	0.50	128	1.0	32	1.0	>128	4.0	>128	2.0
A. calcoaceticus	GC 756	2.0	>128	4.0	>128	4.0	>128	8.0	>128	0.8
P. aeruginosa	ATCC 27853	8.0	>128	16	>128	16	>128	32	>128	32
P. aeruginosa	GC 1544 Opr0-	16	>128	32	>128	32	>128	64	>128	64
X. maltophilia	GC 562	>128	>128	>128	>128	>128	>128	>128	>128	>128
S. aureus	ATCC 29213	≤0.06	4.0	0.06	8.0	0.03	4.0	0.12	4.0	0.06
S. aureus	GC 2220 MRSA	1.0	128	4.0	>128	2.0	64	20	64	4.0
E. faecalis	GC 842	0.50	64	2.0	64	2.0	64	4.0	32	2.0
E. faecium	GC 1182	64	>128	128	>128	128	>128	>128	>128	64
										
Rel. hydrolysis by hog DHP		8.5	11		4.9		20		19	

^{*}Following preincubation in mouse serum. **Imipenem = 100.

significantly improved oral activity due to the presence of the charged species. However, bis double ester derivatives, 3 and 5, all demonstrated enhanced oral activity, indicating that the bis double ester prodrugs have high oral bioavailability in the mouse model. These results are consistent with the increased calculated partition coefficients (Clog P) of bis double ester prodrugs 3 shown in Table 3. By varying the R₂ and keeping the R₁

Table 3 ED₅₀ (mg/kg)^a for THF Carbapenems, 1, 2, 3, 4, 5 and 7, Against Acute Lethal *E. coli* Infection in Mice

				E. coli #311		
Compound	Clog P ^b	\mathbf{R}_{1}	B₂	<u>SOD</u> °	<u>SSC</u> ⁴	SOD/SSC
1a	-3.02	***		3.8	0.34	11
2 a	0.11	CH(Me)OAc	Na	4.9	0.65	7.5
2 b	0.11	CH(Me)OAc	H·EtN(IPr) 2	4.5	0.62	7.3
2 c	0.64	CH ₂ OCO#Pr	Na	5.1	0.59	8.6
2 d	0.86	CH ₂ OCOPr	Na	3.4	0.26	13
2 0	1.04	CH ₂ OCO:Bu	H·EtN(IPr) ₂	2.9	0.65	4.5
21	1.45	CH2OCOC6H5	Na	2.9	0.32	9.1
7a	-0.12	HHCI	CH,OCO,Et	8.2	0.62	13
7 b	0.19	HHCI	CH(Me)OCO ₂ Et	25	1.8	14
7 c	1.69	HHCI	CH(Me)OCO ₂ C ₆ H ₁₀	>3.2	1.6	
3 a	1.28	CH ₂ OCO/Pr	CH ₂ OCO ₂ Et	0.56	0.40	1.4
3 b	2.04	CH ₂ OCO/Pr	CH ₂ OCO ₁ Bu	1.6	1.9	0.84
3 c	1.89	CH ₂ OCO/Pr	CH(Me)OCO ₂ iPr	1.4	2.1	0.67
3 d	3.09	CH ₂ OCO/Pr	CH(Me)OCO2C6H10	1.5	1.9	0.79
3 ●	0.75	CH(Me)OAc	CH ₂ OCO ₂ Et 1	0.83	0.59	1.4
3 f	1.50	CH ₂ OCOPr	CH2OCO2Et	1.3	0.49	2.6
3 g	1.58	CH(Me)OCO#Pr	CH ₂ OCO ₂ Et	0.72	0.45	1.6
3 h	1.67	CH ₂ OCO ₂ Bu	CH,OCO,Et	0.96	0.73	1.3
3 i	1.98	CH(Me)OCOtBu	CH ₂ OCO ₂ Et	0.42	0.46	0.91
3 j	2.08	CH ₂ OCOC ₆ H ₅	CH ₂ OCO ₂ Et	0.76	0.54	1.4
1 b	-3.02		•••	3.5	0.28	12
4	0.64	CH ₂ OCO/Pr	H·EtN(IPr) 2	2.3	0.18	14
5	1.28	CH ₂ OCO <i>i</i> Pr	CH ₂ OCO ₂ Et	0.87	0.37	2.4
Primaxin*				79	0.70	113

^aFor all mono and bis double ester prodrugs 2, 3, 4, 5, and 7, the numbers have been normalized with a factor which is the molecular weight of the parent compound divided by the molecular weight of the prodrug. ^bThe Mac-Clog P program from Biobyte was used to calculate log P values of the nonionic form. ^cSingle oral dose. ^dSingle subcutaneous dose. ^eA 1:1 combination of imipenem and cilastatin.

1816 Y.-I. LIN et al.

with the same moiety (CH₂OCO₂Pr), CH₂OCO₂Et was identified as the most effective moiety for the R₂ (compounds 3a-3d). Likewise, by changing the R₁ and keeping the R₂ with the same moiety (CH₂OCO₂Et), CH(Me)OCO₂Bu was found to be the best moiety for the R₁ (compounds 3a and 3f-3j). Therefore, the best combination of the R₁ and the R₂ led to the identification of the bis double ester prodrug 3i which had oral activity that was as good as that of the best peptidic prodrug (L-Val derivative) of carbapenem 1a.²

Acknowledgments: The authors would like to thank Ms. Eugenia Delos Santos for her superb technical assistance.

References and Notes

- (a) Lin, Y.-I; Bitha, P.; Sakya, S. M.; Strohmeyer, T. W.; Li, Z.; Lee, V. J.; Lang, S. A., Jr.; Yang, Y.; Bhachech, N.; Weiss, W. J.; Petersen, P. J.; Jacobus, N. V.; Bush, K.; Testa, R. T.; Tally, F. P. Bioorg. Med. Chem. Lett. 1997, 7, 1671. (b) Lin, Y.-I; Bitha, P.; Sakya, S. M.; Strohmeyer, T. W.; Feigelson, G. B.; Ziegler, C. B., Jr.; Lee, V. J.; Tally, F. P. 34th Interscience Conference on Antimicrobial Agents and Chemotherapy. Orlando 1994. Abstract F70. (c) Lin, Y.-I; Bitha, P.; Sakya, S. M.; Strohmeyer, T. W.; Yang, Y.; Weiss, W. J.; Jacobus, N. V.; Bush, K.; Testa, R. T.; Tally, F. P. 34th ICAAC. Orlando 1994. Abstract F72. (d) Weiss, W. J.; Yang, Y.; Petersen, P. J.; Shelofsky, A. G.; Bush, K.; Jacobus, N. V.; Bitha, P.; Lin, Y.-I; Testa, R. T.; Tally, F. P. 34th ICAAC. Orlando 1994. Abstract F76. (f) Weiss, W. J.; Lin, Y.-I; Testa, R. T.; Tally, F. P. 34th ICAAC. Orlando 1994. Abstract F76.
- 2. Lin, Y.-I; Bitha, P.; Sakya, S. M.; Li, Z.; Strohmeyer, T. W.; Lang, S. A., Jr.; Yang, Y.; Bhachech, N.; Weiss, W. J.; Petersen, P. J.; Jacobus, N. V.; Bush, K.; Testa, R. T. Bioorg. Med. Chem. Lett. 1997, 7, 1665.
- 3. A private communication with Dr. M. Hui and Dr. S. Ku.
- 4. Alexander, J.; Cargill, R.; Michelson, S. R.; Schwam, H. J. Med. Chem. 1988, 31, 318.

(Received in USA 9 April 1997; accepted 30 May 1997)